Patient Selection and Risk:Benefit Considerations: An Oncologist's Perspective

Michael Atkins, M.D.

Deputy Director, Georgetown-Lombardi Cancer Center William M. Scholl Professor and Vice Chair of Oncology Georgetown University School of Medicine

#MelanomaNeoadjuvant

Disclosures

Consultant: Amgen, Array, Astra Zeneca, Aveo, Boehringer-Ingelheim, BMS, Exelixis, Eisai, Ideera, ImmunoCore, Iovance, Merck, Newlink, Novartis, Genentech/Roche, Pfizer **Advisory Boards:** Arrowhead, BMS, Fathom, Galactone, Leads, Merck, Novartis, Pfizer, Pneuma

Financial Interest: Pyxis, Werewolf

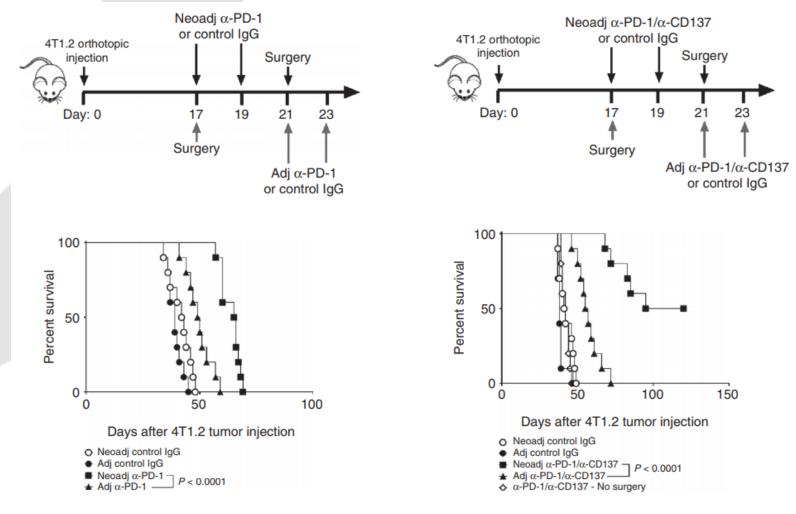
Research Support (to institution): BMS, Genentech/Roche, Merck, Pfizer

Other: UpToDate -Melanoma and RCC Section Editor, COTA

Topics To Cover

- Type of Trials
- Potential Benefits/Risks of Neoadjuvant Therapy
- Eligibility Criteria for Trials
- Patients Examples
- Future Considerations for such patients
 - Upfront systemic therapy with imaging endpoints and surgical salvage

Types of Neoadjuvant Trials


- Single arm or randomized trials where all get neoadjuvant therapy; surgery at a specified time (3-9 weeks)- RR (path CR), RFS, safety, biomarkers are major endpoints
- Randomized trials where patients get same therapy in either the neoadjuvant or adjuvant setting - RFS, OS, and safety are principal endpoints

• Eligibility criteria might be different for these distinct trials

Potential Benefits of Neoadjuvant Treatment

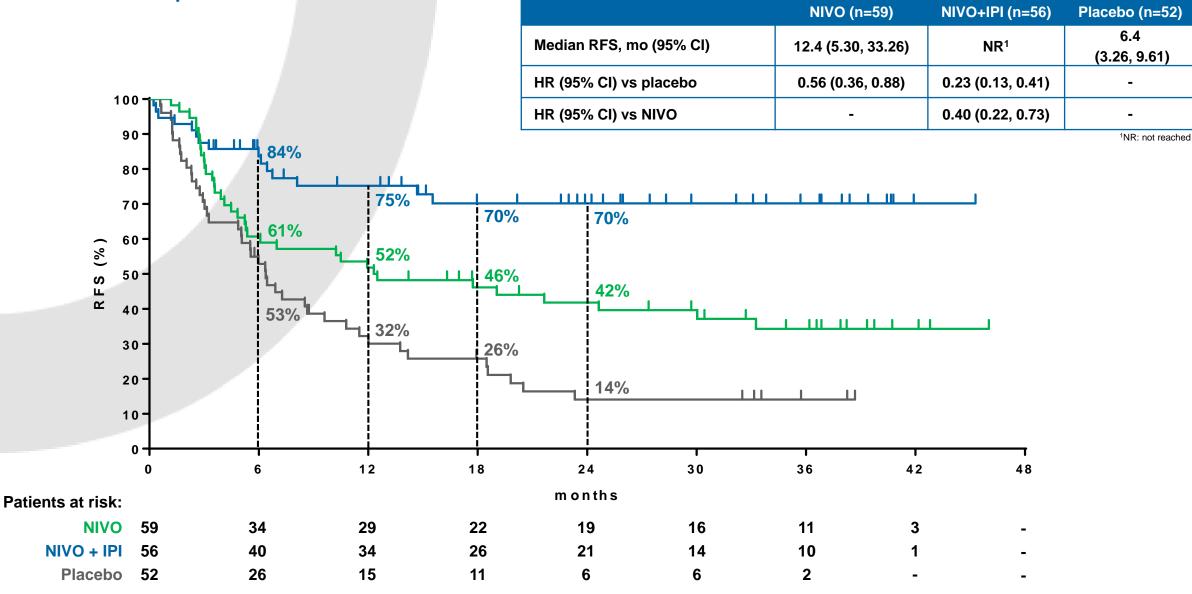
- Tumor shrinkage → decreased surgical morbidity
 - Potentially decreased need for surgery
- Destruction of micrometastases → prevention of distant disease spread
 - May be superior to adjuvant treatment (\$1801 Trial)
- Objective measure of response to therapy → personalization of subsequent adjuvant therapy
- Opportunity to collect high-quality serial biospecimens to facilitate understanding of drug response and resistance; identify surrogate markers
- Potential pathway for new drug evaluation/registration
 - Expedite, rationalize combination drug regimen development
 - Ability to study intralesional therapies

Preclinical Data Suggest Neoadjuvant Checkpoint Inhibition Is Superior to Adjuvant Checkpoint Inhibition

S1801 Schema

Adjuvant pembro, 200/kg x 18 cycles Arm A (control) 1:1 randomization Adjuvant pembro, 200/kg x 15 cycles Arm B (experimental)

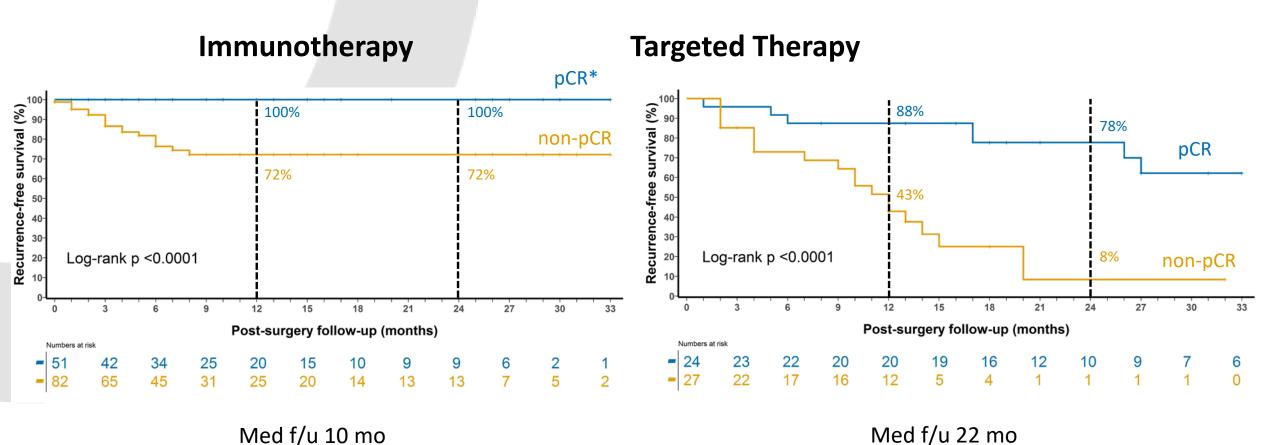
PI: Sapna Patel, MDACC


Stage III (N1b or higher) Melanoma

N=556

THE IMMUNED STUDY- STAGE IV NED

RFS in all patients


Schadendorf et al ESMO 2019

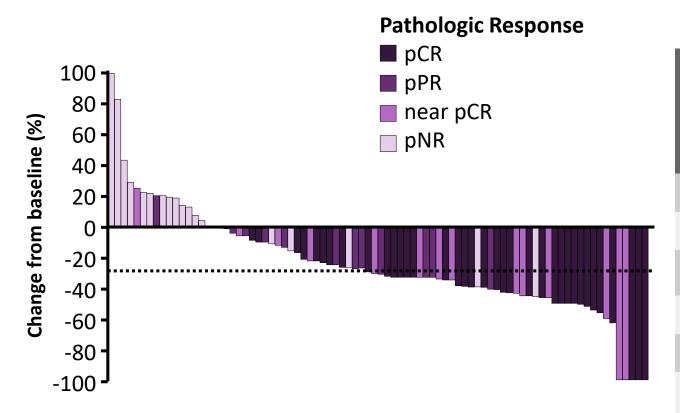
Potential Benefits of Neoadjuvant Treatment

- Tumor shrinkage → decreased surgical morbidity
 - Potentially decreased need for surgery
- Destruction of micrometastases → prevention of distant disease spread
 - May be superior to adjuvant treatment (S1801 Trial)
- Objective measure of response to therapy → personalization of subsequent adjuvant therapy
- Opportunity to collect high-quality serial biospecimens to facilitate understanding of drug response and resistance; identify surrogate markers
- Potential pathway for new drug evaluation/registration
 - Expedite, rationalize combination drug regimen development
 - Ability to study intralesional therapies

INMC Pooled Analysis of Neoadjuvant Trials: RFS by pathological response and drug

Potential Benefits of Neoadjuvant Treatment

- Tumor shrinkage → decreased surgical morbidity
 - Potentially decreased need for surgery
- Destruction of micrometastases → prevention of distant disease spread
 - May be superior to adjuvant treatment (S1801 Trial)
- Objective measure of response to therapy → personalization of subsequent adjuvant therapy
- Opportunity to collect high-quality serial biospecimens to facilitate understanding of drug response and resistance; identify surrogate markers
- Potential pathway for new drug evaluation/registration
 - Expedite, rationalize combination drug regimen development
 - Ability to study intralesional therapies


Potential Risks of Neoadjuvant Therapy: Factors favoring Adjuvant Therapy

- Possible loss of some standard prognostic factors: LN #, tumor volume, etc
- Treatment toxicity may limit ability to undergo surgery at scheduled time (may be more than in Stage IV disease)
- Disease growth might make surgery more complicated/impossible
- Disease might spread to distant sites during delay in surgical therapy

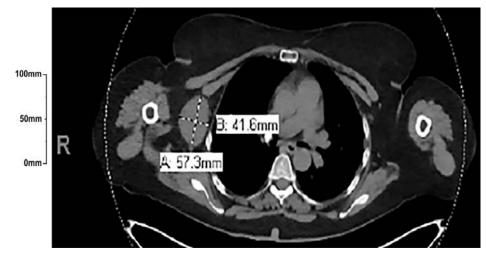
OpACIN-Neo: irAEs in First 12 Weeks

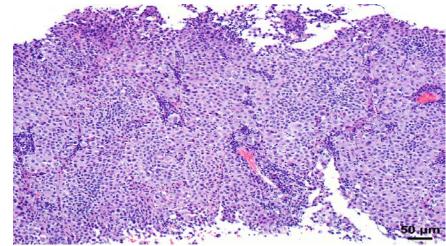
AE, n (%)	Nivo 1 mg/kg + Ipi 3 mg/kg (n=30)		Nivo 3 mg/kg + Ipi 1 mg/kg (n=30)		Ipi 3 mg/kg then Nivo 3 mg/kg (n = 26)	
	All grades	Grade 3-4	All grades	Grade 3-4	All grades	Grade 3-4
Any	29 (97)	12 (40)	29 (97)	6 (20)	26 (100)	13 (50)
Fatigue	19 (63)		17 (57)		14 (54)	
Rash	18 (60)	2 (7)	11 (37)	1 (3)	18 (69)	3 (12)
Pruritus	12 (40)		10 (33)		10 (38)	
ALT increased	12 (40)	6 (20)	6 (20)	1 (3)	9 (35)	2 (8)
Hyperthyroidism	12 (40)		2 (7)		9 (35)	1 (4)
Diarrhea	7 (23)	1 (3)	4 (13)	1 (3)	11 (42	3 (12)
Headache	8 (27)	1 (3)	5 (17)		4 (15)	
Fever	4 (13)		4 (13)	1 (3)	7 (27)	
Dry mouth	6 (20)		3 (10)		3 (12)	
Colitis	2 (7)	2 (7)	1 (3)		7 (27)	5 (19)
Hypothyroidism	5 (17)		2 (7)		3 (12)	
Nausea	4 (13)		1 (3)		4 (15)	1 (4)
Arthralgia	2 (7)		3 (10)		4 (15)	
Dry eye	2 (7)		3 (10)		2 (8)	
Flu-like symptoms	1 (3)		4 (13)		2 (8)	
Infusion related reaction			5 (17)		2 (8)	
Serum amylase increased	3 (10)	1 (3)	2 (7)	1 (3)	1 (4)	

OpACIN-Neo: Pathologic Responses

Pathologic Response: Central Review

Response, n (%)	Nivo 1 mg/kg + Ipi 3 mg/kg (n = 30)	Nivo 3 mg/kg + Ipi 1 mg/kg (n = 30)	Ipi 3 mg/kg Then Nivo 3 mg/kg (n = 26)
Overall	24 (80)	23 (77)	17 (65)
pCR	14 (47)	17 (57)	6 (23)
Near pCR	7 (23)	2 (7)	6 (23)
■ pPR	3 (10)	4 (13)	5 (19)
■ pNR	6 (20)	7 (23)*	8 (31)
■ NE	-	-	1 (4)†

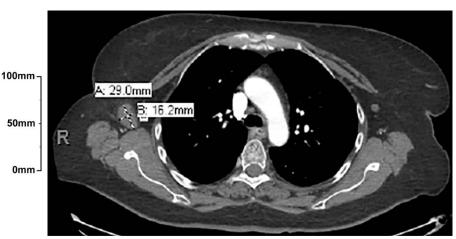

^{*}n = 1, only palliative resection of largest lymph node. [†]Surgery not performed due to toxicity; patient had a radiologic CR.

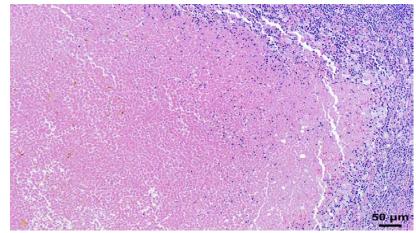

Eligibility for Neoadjuvant Trials

- Palpable or radiographically detectable (RECIST measurable) disease (Stage IIIB-Stage IV)
 - Biopsy proven
 - Surgically "resectable" with acceptable morbidity (Stage III incl. in transits, some Stage IV)
 - Medically resectable pace of disease
 - Normal range LDH
 - "Stable stage"
 - No co-morbidities relevant to surgery, ECOG PS < 2
- No other metastatic sites
- No prior relevant systemic therapies
- Eligible for specific systemic therapies
 - No h/o autoimmune conditions, requirement for immunosuppressive drugs, etc.
 - A targetable mutation (if a targeted therapy trial); no CHF, other cancers, etc.
- Compliant- willing to follow protocol

Ideal Patient for Neoadjuvant Clinical Trial

- 39-year-old woman with history of T2aN0M0 melanoma of the right upper arm (excised 5/2009)
- Current presentation:
 - Palpated a right axillary mass 5/2016
 - Imaging showed solitary right axillary node
 - Core biopsy revealed melanoma that is BRAF, NRAS, KIT wild type

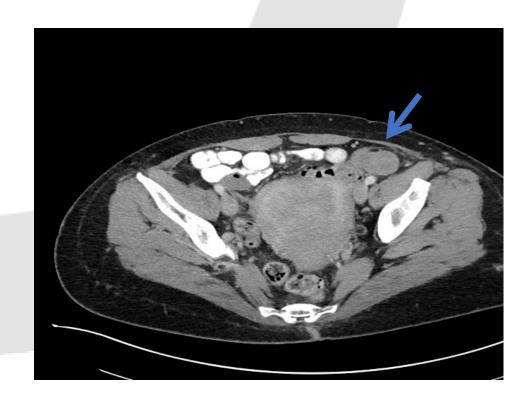




Slides courtesy of Rodabe Amaria, MD MD Anderson Cancer Center

Ideal Patient for NeoAdjuvant Clinical Trial

- Patient entered neoadjuvant combination immunotherapy clinical trial
- Randomized to nivolumab 1 mg/kg + ipilimumab
 3 mg/kg Q3W for up to 3 doses
- Able to receive all planned neoadjuvant doses
 - Grade 1 diarrhea, grade 2 fevers, grade 2 fatigue
- Scans prior to surgery showed PR (45% reduction);
 pathology review at surgery shows pCR
- Remains without evidence of disease 31 months after surgery

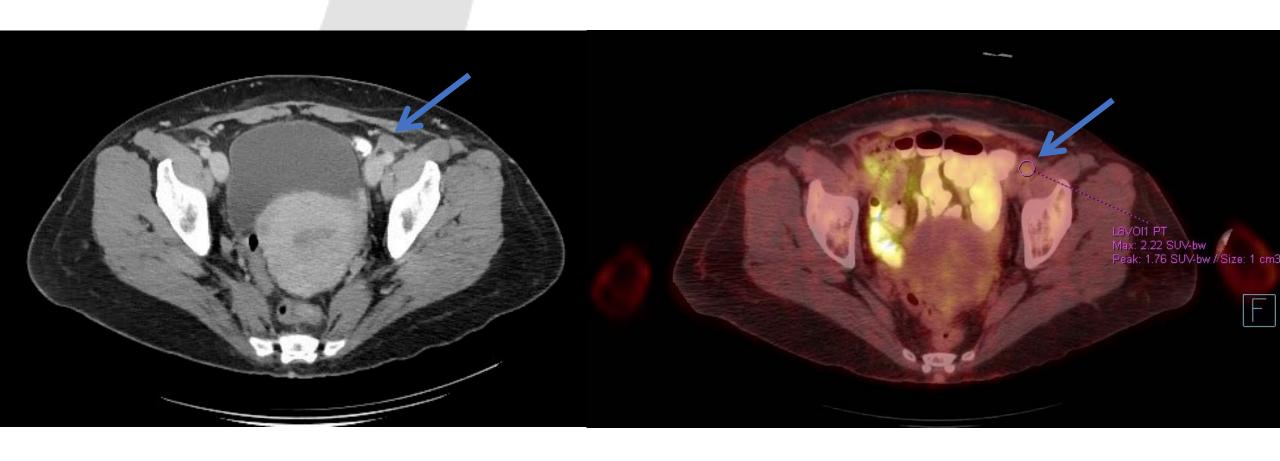

- 39-year-old woman with history of excised T2aN0M0 melanoma of the right upper arm
- Current presentation: solitary right axillary node mass; core biopsy revealed melanoma that is BRAF, NRAS, KIT wild type

Not Ideal Patient for Some Neoadjuvant Clinical Trials

- 52 yo woman presented 7/2018 with a raised, nodular, bleeding lesion on her left thigh that had been present for over a year
 - Shave bx- at least 1.4 mm thick melanoma transected at base with ulceration and MR of 17/mm2
 - Excisional bx showed 5.35 mm thick lesion with negative margins.
 - PET-CT showed no foci of distant disease
- 2 months later- Underwent WLE and SLN biopsy at MSKCC.
 - Pathology showed 0.5 mm satellite in SQ tissue and 0/2 SLNs involved.
 - Tumor is BRAF V600E and NRASQ61R negative
- 1 month later- presents to MGUH for discussion of subsequent therapy:
 - Adjuvant IO recommended
- 2 months later- presents to begin adjuvant therapy
 - LDH elevated (278)
 - Imaging shows large PET+ pelvic mass; No other active disease

CT Scan - baseline

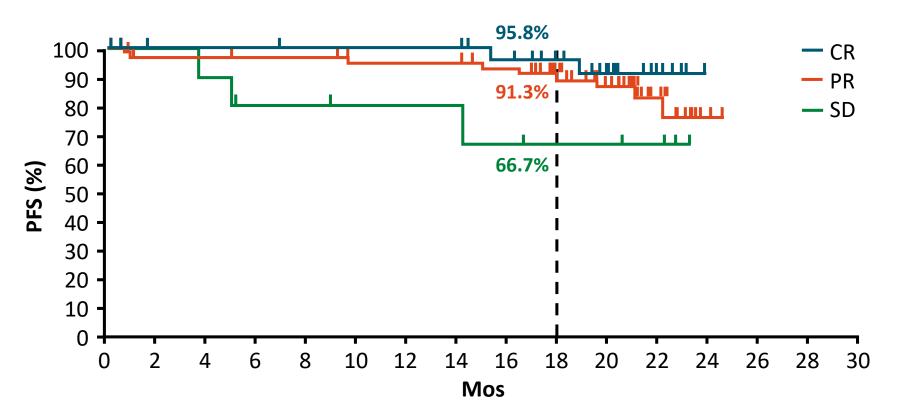
Left external iliac node


Not Ideal Candidate for Some Neoadjuvant Trials (cont)

- Patient case was discussed at Multidisciplinary Conference
 - Concern raised about extent of surgery; pace of disease
 - upfront treatment with nivo/ipi
- She began nivo 3 mg/kg + ipi 1 mg/kg IV q 3 weeks.
- She presented after dose 2 (4 weeks) with acute onset cough and dyspnea (O2 sat 92%)
- Diagnosed with bronchospasm- received HD steroids with improvement in breathing; IO therapy held
- Taper required 8 weeks because recurrent symptoms
- Repeat CT scan at 6 weeks showed major tumor shrinkage.
- Repeat scan at 12 weeks showed additional shrinkage Metabolic-CR

Serial Images

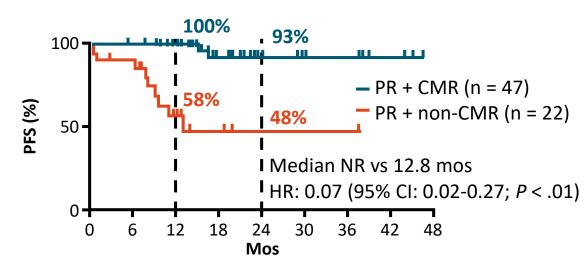
Week 6 Week 12 **Baseline**


Pet-CT Scan findings

What is the value of subjecting this patient to surgery?

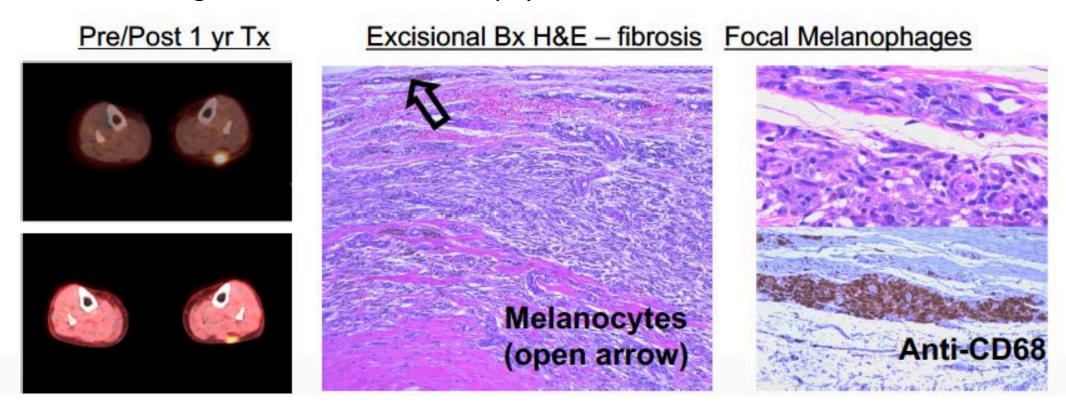

KEYNOTE-006: PFS With Pembrolizumab in Patients Who Completed Protocol

Randomized, open-label phase III trial of pembrolizumab (Q2W or Q3W) vs ipilimumab for patients with unresectable stage III/IV melanoma (N = 834); current analysis assessed population of patients who completed protocol-specified 2 yrs of pembrolizumab (n = 103)


Imaging Biomarkers and Response Durability Predictions

 Prospective single center cohort of patients with metastatic melanoma treated with PD-1—based therapy who underwent baseline and 1-yr PET (N = 118)

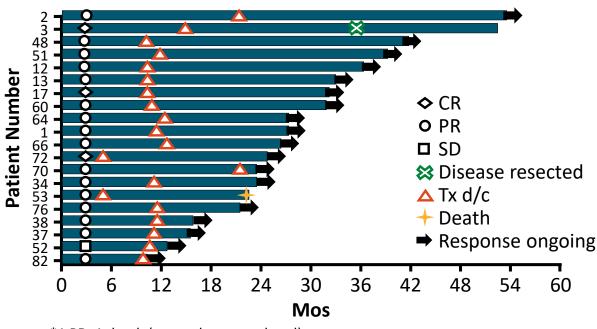
<u> 100% </u> 100% 100 86% **I 79%** PFS (%) - CR (n = 29) 50 - PR/SD (n = 75) I Median NR in both groups HR 0.18 (95% CI 0.06-0.56; P = .06) 18 12 36 42 24 Mos


PFS After 1 Yr by PET/CT Response in Patients With CT-Based PR

- Many "remission" patients do not reach CR by CT scan
- CMR by PET likely better at predicting long-term PFS than CT in patients with PR
- CMR by PET might guide treatment discontinuation—needs prospective validation

MedStar Georgetown Approach: Create TFS

 Patient example: PET/CT scan with near CR except for residual hypermetabolic disease site negative on excisional biopsy


MedStar Georgetown Approach in Stage IV: Create TFS

 Single institution review of patients with advanced melanoma treated with PD-1—based therapy (pembrolizumab or nivolumab monotherapy or combination therapy with ipilimumab) (N = 96)

Off Treatment Survival Following Tx D/c by Reason

OS for Patients With Tx D/c for Patient/Provider Decision (n = 20)*

Take Home Messages

- Neoadjuvant therapy is currently a research tool in melanoma
 - Useful for understanding biology and potentially expediting drug development
 - Its clinical utility over adjuvant therapy remains to be determined
 - Toxicities might interfere with proposed surgery
 - Risk/benefits need to be discussed with all patients
 - pCR may be more important for immunotherapy/than tumor targeted therapy
- Upfront therapy with surgical salvage is an future alternative
 - Current immunotherapies create sufficient durable responses to make this an option for patients with stage IV or difficult to resect stage III melanoma
 - Improvement in imaging, blood based biomarkers may ultimately guide salvage surgery decision
 - Targeted therapies for patients with BRAF mutant melanoma are reliably effective in making surgery easier; impact on other efficacy outcomes uncertain